Counting arithmetic formulas

نویسندگان

  • Edinah K. Gnang
  • Maksym Radziwill
  • Carlo Sanna
چکیده

An arithmetic formula is an expression involving only the constant 1, and the binary operations of addition and multiplication, with multiplication by 1 not allowed. We obtain an asymptotic formula for the number of arithmetic formulas evaluating to n as n goes to infinity, solving a conjecture of E. K. Gnang and D. Zeilberger [5]. We give also an asymptotic formula for the number of arithmetic formulas evaluating to n and using exactly k multiplications. Finally we analyze three specific encodings for producing arithmetic formulas. For almost all integers n, we compare the lengths of the arithmetic formulas for n that each encoding produces with the length of the shortest formula for n (which we estimate from below). We briefly discuss the time-space tradeoff offered by each.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs

We study the problem of testing if the polynomial computed by an arithmetic circuit is identically zero (ACIT). We give a deterministic polynomial time algorithm for this problem when the inputs are read-twice formulas. This algorithm also computes the MLIN predicate, testing if the input circuit computes a multilinear polynomial. We further study two related computational problems on arithmeti...

متن کامل

Monomials, multilinearity and identity testing in simple read-restricted circuits

We study the problem of testing if the polynomial computed by an arithmetic circuit is identically zero. We give a deterministic polynomial time algorithm for this problem when the inputs are read-twice or readthrice formulas. In the process, these algorithms also test if the input circuit is computing a multilinear polynomial. We further study three related computational problems on arithmetic...

متن کامل

Induction Rules, Reeection Principles, and Provably Recursive Functions

A well-known result of D. Leivant states that, over basic Kalmar elementary arithmetic EA, the induction schema for n formulas is equivalent to the uniform reeection principle for n+1 formulas. We show that fragments of arithmetic axiomatized by various forms of induction rules admit a precise axiomatization in terms of reeection principles as well. Thus, the closure of EA under the induction r...

متن کامل

On the Means of the Values of Prime Counting Function

In this paper, we investigate the means of the values of prime counting function $pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of the ratio of them.

متن کامل

Arithmetic Circuits and the Hadamard Product of Polynomials

Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. • We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015